首页> 外文OA文献 >Solving an Elliptic PDE Eigenvalue Problem via Automated Multi-Level Substructuring and Hierarchical Matrices
【2h】

Solving an Elliptic PDE Eigenvalue Problem via Automated Multi-Level Substructuring and Hierarchical Matrices

机译:通过自动多级子结构和层次矩阵解决椭圆PDE特征值问题

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

To solve an elliptic PDE eigenvalue problem in practice, typically the finite element discretisation is used. From approximation theory it is known that only the smaller eigenvalues and their corresponding eigenfunctions can be well approximated by the finite element discretisation because the approximation error increases with increasing size of the eigenvalue. The number of well approximable eigenvalues or eigenfunctions, however, is unknown. In this work asymptotic estimates of these quantities are derived. For example, it is shown that for three-dimensional problems under certain smoothness assumptions on the data only the smallest $\Theta (N^{2/5})$ eigenvalues and only the eigenfunctions associated to the smallest $\Theta (N^{1/4})$ eigenvalues can be well approximated by the finite element discretisation, when the $N$-dimensional finite element spaces of piecewise affine functions with uniform mesh refinement are used. To solve the discretised elliptic PDE eigenvalue problem and to compute all well approximable eigenvalues and eigenfunctions, a new method is introduced which combines a recursive version of the automated multi-level substructuring (short AMLS) method with the concept of hierarchical matrices (short $\mathcal{H}$-matrices). AMLS is a domain decomposition technique for the solution of elliptic PDE eigenvalue problems where, after some transformation, a reduced eigenvalue problem is derived whose eigensolutions deliver approximations of the sought eigensolutions of the original problem. Whereas the classical AMLS method is very efficient for elliptic PDE eigenvalue problems posed in two dimensions, it is getting very expensive for three-dimensional problems, due to the fact that it computes the reduced eigenvalue problem via dense matrix operations. This problem is resolved by the use of hierarchical matrices. $\mathcal{H}$-matrices are a data-sparse approximation of dense matrices which, e.g., result from the inversion of the stiffness matrix that is associated to the finite element discretisation of an elliptic PDE operator. The big advantage of $\mathcal{H}$-matrices is that they provide matrix arithmetic with almost linear complexity. This fast $\mathcal{H}$-matrix arithmetic is used for the computation of the reduced eigenvalue problem. Beside this, the size of the reduced eigenvalue problem is bounded by a new recursive version of AMLS which further reduces the costs for the computation and the solution of this problem. Altogether this leads to a new method which is well-suited for three-dimensional problems and which allows us to compute a large amount of eigenpair approximations in optimal complexity.
机译:为了在实践中解决椭圆形PDE特征值问题,通常使用有限元离散化。从近似理论可以知道,只有较小的特征值及其相应的特征函数可以通过有限元离散化很好地近似,因为近似误差会随着特征值大小的增加而增加。但是,很好的近似特征值或特征函数的数量是未知的。在这项工作中,得出了这些量的渐近估计。例如,对于在数据上具有一定平滑度假设的三维问题,仅显示最小的\\ Theta(N ^ {2/5})$特征值,并且仅关联与最小的$ \ Theta(N ^当使用具有均匀网格细化的分段仿射函数的$ N $维有限元空间时,通过有限元离散化可以很好地逼近{1/4})$特征值。为了解决离散化的椭圆PDE特征值问题并计算所有可良好近似的特征值和特征函数,引入了一种新方法,该方法结合了自动多层递归构造(short AMLS)方法的递归版本与层次矩阵的概念(short $ \ mathcal {H} $-矩阵)。 AMLS是一种求解椭圆形PDE特征值问题的域分解技术,该方法经过一些变换后,得出了一个简化的特征值问题,该特征值问题的特征值提供了原始问题的特征值的近似值。传统的AMLS方法对于二维提出的椭圆PDE特征值问题非常有效,而对于三维问题则变得非常昂贵,这是因为它通过密集矩阵运算来计算简化的特征值问题。通过使用层次矩阵可以解决此问题。 $ \ mathcal {H} $-矩阵是密集矩阵的数据稀疏近似,例如,这是由与椭圆形PDE算子的有限元离散化相关的刚度矩阵的求逆产生的。 $ \ mathcal {H} $-matrix的最大优点是它们提供了几乎线性复杂的矩阵运算。这种快速的\\ mathcal {H} $-矩阵算法用于计算特征值约简问题。除此之外,特征值减少问题的大小受到新的AMLS递归版本的限制,这进一步降低了计算和解决该问题的成本。总而言之,这导致了一种新方法,该方法非常适合于三维问题,并允许我们以最佳复杂度计算大量本征对近似值。

著录项

  • 作者

    Gerds, Peter;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号